

1

Analysis of B4 overlapping swaths

Ramon Arrowsmith

ramon.arrowsmith@asu.edu

August 30, 2009

Like most LiDAR topography scanning projects, the B4 effort

(http://www.earthsciences.osu.edu/b4/Site/Welcome.html; data are available from

http://www.opentopography.org/) involved multiple overlapping passes to achieve the return

densities that were desired. This strategy introduces a type of “corduroy” artifact that results

from the relative mislocation of the different swaths at the decimeter level. Mike Bevis

(http://www.earthsciences.osu.edu/faculty_bios.php?id=79) once explained to me that this was

largely due to an error source in the GPS positioning that had a wavelength measured in minutes

and amplitude of a decimeter or so. The plane flies ~50 km long swaths and returns, so the

juxtaposition of the different swaths occurs at times separated by minutes to tens of minutes—

just about right to see the effect of the GPS error source. I have talked with numerous people,

including Mike Bevis about looking more into this problem by doing some swath to swath

comparisons. In addition, the swath mismatch problem can be a prototype of actual change

detection, by assuming that the first swath’s different from subsequent ones is not error, but

actual displacement.

I finally had some time to look into this problem. I wrote some MATLAB code which is slow

(see appendices), but it takes any point cloud output from www.opentopography.org and reads

each line, parsing the x,y,z positions into separate flightline groups. The program determines

how many flightlines there are and analyzes each one separately. This includes gridding up the

data to produce a DEM, visualizing it as a hillshade, and subtracting one flightline’s DEM from

the next. This makes the analysis a bit simpler because we know that the grid nodes of the

DEMS are in the same places, so it effectively reduces the problem to 2 dimensions and looks at

the vertical difference between the flightlines, but really, it is a 3D displacement as well as

possible rotation problem. But doing a point cloud comparison (cloud match) is not something I

know how do to at the moment.

In my example, I pulled a dataset of 571,318 points in the area of Calimesa near San Bernardino

California. See this link http://lidar.asu.edu/KnowledgeBase/124875615909578.kmz for a more

extensive KMZ file which can be browsed in GoogleEarth. There were 4 flight lines: '"Str_187"'

'"Str_188"' '"Str_189"' '"Str_190"'. The data were separated and gridded into a ~1.25 m

DEM, and figure 1 shows the resulting hillshades. The study area is 397 m wide and 355 m tall.

The overall average shot density is 4 shots per square meter.

I subtracted each successive grid from the prior to produce the difference plots in figures 2, 3,

and 4. What I did not expect was the range of differences. There are cases of a few tens to a few

http://www.earthsciences.osu.edu/b4/Site/Welcome.html
http://www.opentopography.org/
http://www.earthsciences.osu.edu/faculty_bios.php?id=79
http://www.opentopography.org/

2

hundred meters of difference, while most of the differences are in the -0.5 to 0.5 m range. The

large differences are actually the result of real changes in the scans, such as different

illuminations of structures such as bridges, low altitude atmospheric changes (dust or exhaust),

and movements such as vehicles. The finer differences are probably the result of GPS-induced

error. While these finer errors are not skewed much, they are biased several cm in each case

(figures 2-4).

For a detailed example, I took the points from Str_188 and Str_188 from the area around the I-10

overpass and selected them interactively and plotted them in 3D (figures 5 and 6). The clear

aspect variation in elevation difference is a result mostly of aircraft position relative to the target.

For example, the south side of the bridge looked higher in the first flight (negative means that

Str_188 grid is higher than the Str_189 grid). That can be explained if the plane was relatively

farther south in the earlier flight (makes sense if you look at the hillshades in Figure 1; the plane

was moving north in each swath). In the earlier flight, the laser could see further under the

bridge. The opposite is true for the north side. In addition, the elongate blue and red blobs on I-

10 are vehicles that were there in the Str_188 flight if they were blue and the Str_189 flight if

they are red, but not there for both flights.

In summary, I did not easily find the GPS-induced error for which I was looking except for a hint

of it in the bias between the finer differences of scans. I did find actual change in the study area

due do variation in scan illumination direction and in feature movement.

3

Figure 1. 4 DEMS shown as hillshades from 4 successive B4 overflights. Note that actual changes such

as vehicle movements are evident from the flightlines whose acquisitions were separated by 10s of

minutes.

4

Figure 2. DEM subtraction flight 187 minus flight 188. Upper panels are the differences mapped and the

lower panels are the histograms of the differences in meters. The left panels show the full range of

differences while the right panels limit the differences to -0.5 to 0.5 m.

5

Figure 3. DEM subtraction flight 188 minus flight 189. Upper panels are the differences mapped and the

lower panels are the histograms of the differences in meters. The left panels show the full range of

differences while the right panels limit the differences to -0.5 to 0.5 m.

6

Figure 4. DEM subtraction flight 190 minus flight 189. Upper panels are the differences mapped and the

lower panels are the histograms of the differences in meters. The left panels show the full range of

differences while the right panels limit the differences to -0.5 to 0.5 m.

7

Figure 5. DEM subtraction flight 189 minus flight 188 zoomed to the overpass of I-10. The difference

range is limited here to -0.5 to 0.5. The clear aspect variation in elevation difference is a result mostly of

aircraft position relative to the target. The red box shows the selection area for the points in figure 6.

8

Figure 6. Point cloud comparison from selection area indicated by red box in figure 5. 3D view looking

southeast. Red points are from Str_189 and blue points are from Str_188. This view also shows the better

illumination from the north in Str_189 (note the red points further under the bridge). “Red” and”blue”

vehicles are also apparent, as well as some exhaust (?) in the right center.

9

Appendix A. Main MATLAB script for analysis

%script to analyze different flightlines in a LiDAR point cloud
%JRA 7/27/09
%clear all
close all
clear all
%load all the points and concatenate them
input_fid=fopen('12487600159731699336899.txt');

% file should look like:
% 494836.83,3761290.97,693.73,"493022.181687",49,"Str_188"
% 494629.24,3761355.02,700.07,"493825.723392",48,"Str_189"
xcol=1;
ycol=2;
zcol=3;
delimiter=',';
flightcol=6;
data_line=0;
line_number = 0;
line_counter = 0;
num_lines = 1000;
xmin=inf;
ymin=inf;
zmin=inf;
xmax=-inf;
ymax=-inf;
zmax=-inf;

%This is the main while loop
fgetl(input_fid)
x_vector=[];
y_vector=[];
z_vector=[];
flightvector=[];
i=1;
tic
while data_line~=-1
 data_line = fgetl(input_fid);

 [x, y, z, flight, line_number] = pull_XYZClass(data_line, xcol, ycol,

zcol, flightcol, line_number, delimiter);
 if data_line~=-1
 x_vector=[x_vector x];
 y_vector=[y_vector y];
 z_vector=[z_vector z];
 flightvector=[flightvector flight];

 if x<xmin
 xmin=x;
 end
 if y<ymin
 ymin=y;
 end
 if z<zmin
 zmin=z;

10

 end
 if x>xmax
 xmax=x;
 end
 if y>ymax
 ymax=y;
 end
 if z>zmax
 zmax=z;
 end

 if line_number==1
 flightname=flight;
 else
 tf = strcmp(flightname,flight);
 tf = sum(tf);
 if tf==0
 flightname=[flightname flight];
 end
 end

 line_counter=line_counter+1;
 if line_counter==num_lines
 fprintf('I have analyzed %d lines\n', line_number)
 line_counter=0;
 end
 end
end
fclose(input_fid);
t=toc;
fprintf('\n')
fprintf('%6.2f seconds to process %d lines = %6.2f lines per second\n',t,

line_number, line_number./t)

size(flightname);
num_flights=ans(2)
fprintf('There are %d flights:\n', num_flights)
flightname

figure(1)
clf
hold on
figure(2)
clf
hold on
figure(3)
clf
hold on

Azimuth=315;
Zenith=45;
Zfact=1;

11

num_steps=300;
dx = (xmax-xmin)/num_steps;
xnodes = xmin:dx:xmax;
dy = (ymax-ymin)/num_steps;
ynodes = ymin:dy:ymax;

for i=1:num_flights
 tf=strcmp(flightname(i),flightvector);
 x_flight=x_vector(tf);
 y_flight=y_vector(tf);
 z_flight=z_vector(tf);

 figure(1)
 subplot(1,num_flights,i);
 plot(x_flight,y_flight,'k.')
 axis equal
 axis([xmin xmax ymin ymax])

 [XI,YI] = meshgrid(xnodes,ynodes);
 ElevArray{i} = griddata(x_flight,y_flight,z_flight,XI,YI);

 figure(2)
 subplot(1,num_flights,i);
 plot(xmin,ymin,'k.')
 imagesc(xnodes, ynodes, ElevArray{i}, [zmin zmax])
 axis equal
 axis([xmin xmax ymin ymax])

 figure(3)
 subplot(1,num_flights,i);
 [dElev_dx, dElev_dy] = gradient(ElevArray{i},dx,dy);
 Hillshds=hillshademe(Azimuth, Zenith, Zfact, dElev_dy, dElev_dx);
 plothillshade(xnodes, ynodes, Hillshds)
 axis([xmin xmax ymin ymax])

end

figure(4)
clf
n=length(ElevArray)-1;
for i=1:n
 difference=ElevArray{i+1}-ElevArray{i};
 subplot(1,n,i)
 imagesc(xnodes,ynodes,difference)
 axis equal
end
colormap jet
colorbar

12

Appendix B. PullXYZClass function required for main MATLAB script

function [x, y, z, class, line_number] = pull_XYZClass(data_line, xcol, ycol,

zcol, classcol, line_number, delimiter)
%This function reads a line of a LiDAR point cloud file and returns the x,
%y, z coordinates as double precision numbers and the classification (or

flightline) as a
%string
%the line might look like this
%x,y,z,gpstime,intensity,classification,flight_line
%572184.64,4131383.47,626.35,"414262.936400",0,"2","1"
%
%This sequentially reads through the line, pulling the parts out depending
%on the comma delimeter

remain = data_line;
data_vector =[];
i=1;
%this came from the Matlab Help:
while true
 [str, remain] = strtok(remain, delimiter);
 if isempty(str), break; end
 data_vector{i}=str;
 i=i+1;
end

%pull the x, y, z, class out
if data_line~=-1
 line_number=line_number+1;
 x=str2double(data_vector(xcol));
 y=str2double(data_vector(ycol));
 z=str2double(data_vector(zcol));
 class=data_vector(classcol);
else
 x=inf; y=inf;z=inf; class=inf;
end

13

Appendix C: Function hillshademe necessary for main MATLAB script
function Hillshds=hillshademe(CurrentAzimuth, CurrentZenith, CurrentZ_fact,

dElev_dy, dElev_dx)
 %Azimuth is 0 towards south and increases counterclockwise so 135 is
 %NE and 225 is NW

 CurrentAzimuth = 360.0-CurrentAzimuth+90; %convert to mathematic

unit
 CurrentAzimuth(CurrentAzimuth>=360)=CurrentAzimuth-360;
 CurrentAzimuth = CurrentAzimuth * (pi/180); % convert to radians

 %lighting altitude
 CurrentZenith = (90-CurrentZenith) * (pi/180); % convert to

zenith angle in radians

 [asp,grad] = cart2pol(dElev_dy,dElev_dx); % convert to carthesian

coordinates
 grad = atan(CurrentZ_fact*grad); %steepest slope
 % convert asp
 asp(asp<pi)=asp(asp<pi)+(pi/2);
 asp(asp<0)=asp(asp<0)+(2*pi);

 Hillshds = 255.0*((cos(CurrentZenith).*cos(grad)) + (

sin(CurrentZenith).*sin(grad).*cos(CurrentAzimuth-asp))); % ESRIs algorithm
 Hillshds(Hillshds<0)=0; % set hillshade values to min of 0.

14

Appendix D: Function hillshademe necessary for main MATLAB script

function plothillshade(Easting, Northing, Hillshds)

plot(Easting(1,1),Northing(1,1), 'b.');
hold on
imagesc(Easting,Northing,Hillshds);
colormap('bone');
%colormap('summer');
axis equal;

15

Appendix E. Post processing script for MATLAB.

I used this to process the results that had been loaded into memory after the main script

completed.
%script to process the Calimesa B4 overlaps
clims = [-0.5 0.5];
i=1;
difference188minus187=ElevArray{i+1}-ElevArray{i};
figure(10+i)
clf
subplot(2,2,1)
imagesc(xnodes,ynodes,difference188minus187)
axis equal

subplot(2,2,2)
imagesc(xnodes,ynodes,difference188minus187, clims)
colorbar
axis equal
title('DEM 188 - DEM187, m')

B=reshape(difference188minus187,301.*301,1);
subplot(2,2,3)
hist(B,100)
subplot(2,2,4)
N = hist(B,100);
axis([-1 1 -inf inf])
xlabel('DEM 188 - DEM187, m')
ylabel('Frequency')

i=2;
difference189minus188=ElevArray{i+1}-ElevArray{i};
figure(10+i)
clf
subplot(2,2,1)
imagesc(xnodes,ynodes,difference189minus188)
axis equal

subplot(2,2,2)
imagesc(xnodes,ynodes,difference189minus188, clims)
colorbar
axis equal
title('DEM 189 - DEM188, m')

B=reshape(difference189minus188,301.*301,1);
subplot(2,2,3)
hist(B,1000)
subplot(2,2,4)
N = hist(B,2500);
axis([-0.5 0.5 -inf inf])
xlabel('DEM 189 - DEM188, m')
ylabel('Frequency')
mode189minus188=mode(N)

i=3;
difference190minus189=ElevArray{i+1}-ElevArray{i};

16

figure(10+i)
clf
subplot(2,2,1)
imagesc(xnodes,ynodes,difference190minus189)
axis equal

subplot(2,2,2)
imagesc(xnodes,ynodes,difference190minus189, clims)
colorbar
axis equal
title('DEM 190 - DEM189, m')

B=reshape(difference190minus189,301.*301,1);
subplot(2,2,3)
hist(B,2500)
subplot(2,2,4)
N = hist(B,2500);
axis([-0.5 0.5 -inf inf])
xlabel('DEM 190 - DEM189, m')
ylabel('Frequency')
mode190minus189=mode(N)

figure(20)
clf
imagesc(xnodes,ynodes,difference189minus188, clims)
colorbar
axis equal
title('DEM 189 - DEM188, m')

%get the upper left and lower right of the area in which we want to plot
%the points

% rangeulandlr = ginput;
% xmin=rangeulandlr(1,1);
% xmax=rangeulandlr(2,1);
% ymin=rangeulandlr(1,2);
% ymax=rangeulandlr(2,2);

figure(20)
hold on
plot([xmin xmax xmax xmin xmin], [ymin ymin ymax ymax ymin],'r-')
i=2;
tf=strcmp(flightname(i),flightvector);
x_flight188=x_vector(tf);
y_flight188=y_vector(tf);
z_flight188=z_vector(tf);
locs = find(y_flight188>ymin & y_flight188 <ymax& x_flight188 > xmin &

x_flight188<xmax);
epoints188=x_flight188(locs);
npoints188=y_flight188(locs);
zpoints188=z_flight188(locs);
%plot(epoints188, npoints188, 'b.')
i=3;
tf=strcmp(flightname(i),flightvector);
x_flight189=x_vector(tf);
y_flight189=y_vector(tf);

17

z_flight189=z_vector(tf);
locs = find(y_flight189>ymin & y_flight189 <ymax& x_flight189 > xmin &

x_flight189<xmax);
epoints189=x_flight189(locs);
npoints189=y_flight189(locs);
zpoints189=z_flight189(locs);
%plot(epoints189, npoints189, 'r.')

figure(21)
clf
plot3(epoints188, npoints188, zpoints188, 'b.')
hold on
plot3(epoints189, npoints189, zpoints189, 'r.')
xlabel('easting (m)')
ylabel('northing (m)')
zlabel('elevation (m)')
view(-37,30)

% el=45;
%
% for az = 1:360
% view(az,el)
% axis equal
% M(az) = getframe;
% end
% figure(22)
% clf
% mov=movie(M)

