
Notes on Lidar interpolation

J Ramón Arrowsmith
with contributions from Chris Crosby and Jeff Conner

Department of Geological Sciences
Arizona State University

Tempe, AZ, 85287
ramon.arrowsmith@asu.edu

May 24, 2006

1 Introduction

Representation of the earth’s surface as a point cloud (xi, yi, zi, where x and y are the horizonal coordinate
axes, z is the vertical, and i is the index of the point) is often done using Light Distance And Ranging
(LiDAR) technology from the air or ground (a general reference for much of what follows is El-Sheimy, et al.,
2005). This technology uses a scanning laser from a known position to measure the relative distance to the
target (earth’s surface in our case). The position and orientation of the scanner are estimated using Global
Positioning System (GPS) and Inertial Measuring Units (IMU; if airborne or vehicle-mounted). Given laser
pulse rates at > 10s of khz, these datasets are typically voluminous (>10s of millions of points). In addition,
the scattered points are scattered irregularly across the target surface, including the ground, structures, and
vegetative canopy.

Given these large data volumes, and typical visualization and analysis methods in earth science, we com-
monly make at least 3 assumptions about the surface of interest: 1) it is continuous, 2) z is a single-valued
function of x and y (“2.5 dimensional”), and 3) it can be represented by elevations estimated on a regular XY

grid.
The purpose of this note is to define the basic geometry of the point cloud and its 2.5D representation on

a grid using local interpolation methods.

2 Geometry of the point cloud

For our purposes, we do not consider the precision or accuracy of the point cloud measurements (typically on
the order of cm to dm for airborne surveys, e.g., El-Sheimy, et al., 2005, p. 46). We also assume that the data
cover a small enough area that a universal transverse mercator (UTM) or state plane projection can be used
in a cartesian sense (the horizontal scale is constant). Figure 1 shows a perspective and map view of the point
cloud and the coordinate system and spacing of the regularly spaced nodes or grid (with locations XY) onto
which we estimate the elevations Z. The grid nodes are separated by ∆x and ∆y.

3 Surface interpolation (also known as gridding)

Interpolation is the general process of estimating the elevation at a specified grid node from measurements
at surrounding point locations (sample or reference points; El-Sheimy, et al., 2005, Chapter 4). Global
interpolation methods use all of the known elevations at the reference points to estimate the unknown elevation
at the reference point. Example global methods are: Trend surface analysis, Fourier analysis, and Kriging.
Given that topographic measurements are not dependent on measurements made a long distance away, an
alternative and appropriate set of interpolation methods are local. They utilize the elevation information only
from local reference points. El-Sheimy, et al., 2005 delineate the following general implementation for a local
interpolation technique:

1. Define a search area (neighborhood) around the point to be interpolated;

Notes on Lidar interpolation 2

2. Identify (find) the reference points in that neighborhood;

3. Choose a mathematical model to represent the elevation variation over the neighborhood;

4. Use that model to estimate the elevation at the specified grid node.

They also identify a number of local interpolation methods: linear, bilinear, polynomial, nearest neighbor,
cubic convolution, moving average, and inverse distance weighting (IDW).

0

100

200

300

0

100

200

300

100

120

140

160

180

200

220

240

260

280

x, Easting (ft)
y, Northing (ft)

z,
 e

le
va

tio
n
 (

ft
)

0 50 100 150 200 250

100

50

0

50

100

150

200

250

300

350

400

x, Easting (ft)

y,
 N

o
rt

h
in

g
 (

ft
)

points and nodesA B

∆y

∆x

Figure 1: Geometry of LiDAR point cloud (2000 points). A) Perspective view of sample dataset from northern
San Andreas Fault dataset (Harding, et al.). View is to the northeast up a small trough. Note trees on both
sides of the drainage. B) Map view of point cloud (black dots) with regularly spaced nodes (grid, red crosses)
separated by ∆x and ∆y. Coordinate system is x, y, z or Easting, Northing, Elevation. These data are in feet.

Notes on Lidar interpolation 3

4 Local interpolation algorithms

In the following algorithm, we load the data, define the grid and neighborhoods, find the points, and interpolate
using 4 estimation methods (minimum, maximum, mean, and weighted mean–points are inversely weighted
by their distance from the grid node).

1. Load points

2. Define variables:
∆x and ∆y–grid spacing in x and y
Search radius–radius of neighborhood from grid node

3. Compute variables:
From point cloud x and y ranges, determine xmin, xmax, ymin, ymax.
Compute node locations Xj,kYj,k by incrementing ∆x from xmin not to exceed xmax; ditto for y. j, k

are the X and Y indices respectively.

4. Find all points in neighborhood: dj,k ≤
√

(xi − Xj,k)2 + (yi − Yj,k)2. Where dj,k is the horizontal
distance between the ith point and the j, k node. Note that this is the most computationally challenging
part of the task, given that the data are unsorted. A naive implementation (such as that I present below)
searches the entire dataset each time. Typical implementations use a quadtree approach to presort the
data into local areas for computation. Some overlap is necessary between adjacent quadtree nodes to
ensure that all the points in the neighborhood of a grid node are found. See Appendix 2 for various
quadtree pseudocodes. Given the point density for LiDAR, dj,k ≤

√
2∆x will find all of the points in

the circle that circumscribes the grid cell.

5. Estimate elevation Zj,k at Xj,kYj,k:

Zmin = min(Zl) (1)

Zmean = mean(Zl) (2)

Zmax = max(Zl) (3)

ZIDW =

∑n

l=1

Zl

d
p

l
∑n

l=1

1

d
p

l

(4)

where l is the index of the points in neighborhood, and p is the weight (typically 2). ZIDW is Inverse
Distance Weighting from El-Shiemy, et al., 2005. If no points are within the search radius, set Zj,k =
NaN . Note that the Zmin and Zmax computations could be implemented with the IDW approach.

I implemented the above algorithm in Matlab (see Appendix 1).

5 Examples

Figure 2 illustrates a case of local interpolation of the 2000 points in Figure 1 from the Northern San Andreas
Fault dataset. Because the search radius is less than the grid spacing, the neighborhoods for local interpolation
around each grid point are clear. Some LiDAR datasets (such as this one, are classified by return type (ground,
vegetation, structure, blunder). From a query by classification, one can compute a bare earth DEM or a canopy
top DEM. In my computations, Zmin is a crude way to estimate the bare earth without the classification.
Similarly, the Zmax is a local estimate of canopy top, and the Zdif = Zmax−Zmin estimates the canopy height
over the search radius assuming that the topography does not change significantly relative to canopy. Note
small differences between Zmean and ZIDW . Here, p = 2, and so the weighted mean of ZIDW emphasizes local
points much more than the straight average of Zmean.

Notes on Lidar interpolation 4

0 100 200
0

50

100

150

200

250

Easting (ft)

N
o
rt

h
in

g
 (

ft
)

points and nodes

0 100 200
0

50

100

150

200

250

Zmax

0 100 200
0

50

100

150

200

250

Zmin

0 100 200
0

50

100

150

200

250

Zmean

0 100 200
0

50

100

150

200

250

Zidw

0

50

100

150

200

250

0 100 200
0

50

100

150

200

250

Zdif

Figure 2: First example of local interpolation. Upper left plot shows point cloud in black with grid nodes and
surrounding neighborhood points used in local interpolation in magenta. Zmin, Zmax, Zmean all are computed
with equal weights on points in neighborhood, while ZIDW inversely weights the contributions of the points by
their distance. At lower left, Zdif is the difference between the Zmin and Zmax. It is a measure of the canopy
height that is independent of the point classifications that may be made for ground and vegetation. The
colorbar at right applies to the elevation range for all of the plots. p = 2, ∆x = ∆y = 50ft, and dj,k ≤ 20ft.

Figure 3 illustrates the second example of local interpolation on this dataset. The grid spacing is still
fairly coarse at 25 ft, and the search radius is 35.4 ft. The result is a smoothed representation of the local
topography and canopy. Zdif shows the smoothed canopy height.

Figure 4 illustrates the third example of local interpolation on this dataset. I have produced a high
resolution DEM with ∆x = ∆y = 5ft, and di = 7ft. One can see the finer textures of the canopy in Zmax and
Zdif . Zmin is fairly smooth mostly ground surface while the Zmean and Zidw obviously are a representation
of the surface that includes both the ground and the vegetation.

Point densities per pixel for the three examples are presented in Figure 5. The left plot shows point
densities up to about 55 pixel−1 with dj,k ≤ 20ft (Figure 2). Figure 3’s point densities (middle) are as high
as 168 pixel−1 with dj,k ≤ 35.4ft. For the high resolution gridding shown in Figure 4, point densities range
between 0 and 12 pixel−1 for dj,k ≤ 7ft (Figure 5 right).

Notes on Lidar interpolation 5

0 100 200
0

50

100

150

200

250

Easting (ft)

N
o
rt

h
in

g
 (

ft
)

points and nodes

0 100 200
0

50

100

150

200

250

Zmax

0 100 200
0

50

100

150

200

250

Zmin

0 100 200
0

50

100

150

200

250

Zmean

0 100 200
0

50

100

150

200

250

Zidw

0

50

100

150

200

250

0 100 200
0

50

100

150

200

250

Zdif

Figure 3: Second example of local interpolation. p = 2, ∆x = ∆y = 25ft, and dj,k ≤ 35.4ft.

6 References

El-Sheimy, N, Valeo, C., and Habib, A., 2005, Digital terrain modeling: acquisition, manipulation, and appli-

cations, Artech House: Boston, MA, 257 pp.

Notes on Lidar interpolation 6

0 100 200
0

50

100

150

200

250

Easting (ft)

N
or

th
in

g
(f

t)

points and nodes

0 100 200
0

50

100

150

200

250

Zmax

0 100 200
0

50

100

150

200

250

Zmin

0 100 200
0

50

100

150

200

250

Zmean

0 100 200
0

50

100

150

200

250

Zidw

0

50

100

150

200

250

0 100 200
0

50

100

150

200

250

Zdif

Figure 4: Third example of local interpolation (highest resolution). The solid dark blue grid cells have no
data because no points were within the search radius of 10 feet from the grid node. p = 2, ∆x = ∆y = 5ft,
and dj,k ≤ 7ft.

Appendix 1: Matlab implementation

%script to explore oskin methods for dem interpolation

%JRA 5/13-23/06

%clear all

clear x* X* y* Y* Z* density*

%load point cloud

%load mgshort.txt

load mgshort.txt

pointcloud = mgshort;

weighter=2;

dx = 5;

dy = dx;

%search_radius = 20;

search_radius = sqrt(2).*dx

Notes on Lidar interpolation 7

20

25

30

35

40

45

50

0 100 200
0

50

100

150

200

250

Easting (ft)

N
o
rt

h
in

g
 (

ft
)

point density per pixel

60

80

100

120

140

160

0 100 200
0

50

100

150

200

250

2

4

6

8

10

12

0 100 200
0

50

100

150

200

250

Figure 5: Point densities per pixel for the three examples presented here. Figure 2’s density is shown in the
left plot; Figure 3’s density is in the middle, and Figure 4’s density is on the right.

x = pointcloud(:,1)-min(pointcloud(:,1));

y = pointcloud(:,2)-min(pointcloud(:,2));

z = pointcloud(:,3);

minx = min(x);

maxx = max(x);

miny = min(y);

maxy = max(y);

minz = min(z);

maxz = max(z);

xx = (minx+dx):dx:(maxx);

yy = (miny+dy):dy:(maxy);

[X,Y] = meshgrid(xx,yy’);

figure(1)

clf

Notes on Lidar interpolation 8

subplot(2,3,1)

plot(x,y, ’k.’)

hold on

plot(X, Y, ’r+’)

xlabel(’Easting (ft)’)

ylabel(’Northing (ft)’)

for j=1:length(yy)

for k=1:length(xx)

%plot(X(j,k), Y(j,k), ’bo’)

%Use this to search only on those points within the actual grid cell (within dx and dy of the node)

%tf = x<= X(j,k)+dx./2 & x>=X(j,k)-dx./2 & y<=Y(j,k)+dy./2 & y>=Y(j,k)-dy./2;

%locs=find(tf);

%if length(locs)==0

% Zmin(j,k)=NaN;

% Zmean(j,k)=NaN;

% Zmax(j,k)=NaN;

%else

% Zmin(j,k)=min(z(locs));

% Zmean(j,k)=mean(z(locs));

% Zmax(j,k)=max(z(locs));

%end

tf = x<= X(j,k)+search_radius & x>=X(j,k)-search_radius

& y<=Y(j,k)+search_radius & y>=Y(j,k)-search_radius;

locs=find(tf);

localx = x(locs);

localy = y(locs);

localz = z(locs);

dist = sqrt((localx-X(j,k)).^2 + (localy-Y(j,k)).^2);

locs_radius=find(dist<=search_radius);

plot(localx(locs_radius), localy(locs_radius), ’m.’)

axis([minx maxx miny maxy])

title(’points and nodes’)

if length(locs_radius)==0

Zmin(j,k)=NaN;

Zmean(j,k)=NaN;

Zmax(j,k)=NaN;

densitymap(j,k)=NaN;

else

Zmin(j,k)=min(localz(locs_radius));

Zmean(j,k)=mean(localz(locs_radius));

Zmax(j,k)=max(localz(locs_radius));

Zidw(j,k) = sum(localz./(dist.^weighter))./sum(1./(dist.^weighter));

densitymap(j,k)=length(localz);

Notes on Lidar interpolation 9

end

end

end

clims = [0 260];

subplot(2,3,2)

plot(minx, miny, ’k.’)

hold on

imagesc(xx’, yy, Zmax, clims)

axis([minx maxx miny maxy minz maxz])

%colorbar

title(’Zmax’)

subplot(2,3,3)

plot(minx, miny, ’k.’)

hold on

imagesc(xx’, yy, Zmin, clims)

axis([minx maxx miny maxy minz maxz])

%colorbar

title(’Zmin’)

subplot(2,3,4)

plot(minx, miny, ’k.’)

hold on

imagesc(xx’, yy, Zmean, clims)

axis([minx maxx miny maxy minz maxz])

%colorbar

title(’Zmean’)

subplot(2,3,5)

plot(minx, miny, ’k.’)

hold on

imagesc(xx’, yy, Zidw, clims)

axis([minx maxx miny maxy minz maxz])

%colorbar

title(’Zidw’)

subplot(2,3,6)

plot(minx, miny, ’k.’)

hold on

imagesc(xx’, yy, Zmax-Zmin, clims)

axis([minx maxx miny maxy minz maxz])

colorbar

title(’Zdif’)

figure(2)

clf

surfl(X,Y,Zmax)

shading interp

Notes on Lidar interpolation 10

hold on

surfl(X,Y,Zmin)

colormap(jet)

xlabel(’Easting (ft)’)

ylabel(’Northing (ft)’)

zlabel(’Elevation (ft)’)

figure(3)

clf

plot(minx, miny, ’k.’)

hold on

imagesc(xx’, yy, densitymap)

axis([minx maxx miny maxy])

colormap cool

colorbar

xlabel(’Easting (ft)’)

ylabel(’Northing (ft)’)

title(’point density per pixel’)

Psuedo code for Quadtree implementation by Jeff Conner

1st Try (Brute force)

Searches the input file in its entirety for every grid point. Works ok on small data sets.

For all Xi in Xj,k

For all Yi in Yj,k

Djk = sqrt((Xi - Xjk)^2 (Yi - Yjk)^2)

For all Djk in input file <= radius

Zi = average(Djk

2nd try (Quad Tree Method)

Faster than 1st try but runs out of memory on larger data sets. Everything is stored in memory. Trying to fix
with temp files.

BuildTree(treeptr, depth)

If depth is not 0

If child node is null

Create new boundary node

Depth = depth - 1

BuildTree(child node, depth)

Else

If next node is not null

BuildTree(next node, depth)

Else

Depth = Depth + 1

BuildTree(parent_node->next_node, depth

Notes on Lidar interpolation 11

Insert(treeptr, xi, yi, radius)

If point is within node boundary

Is node a bounding node

If node has child nodes

Insert(child node, xi, yi, radius)

Else

Create point node

Else

If next node is not null

Insert(next node, xi, yi, radius)

Else

Create new point on next node

Else

If next node is not null

Insert(next node, xi, yi, radius)

Plot(treeptr, Xi, Yi, radius)

If xy is within current node bounds

If node is "bounding" node

If node.childnode is not null

plot(childnode, Xi, Yi, radius)

Else

While tree node is not false

Djk = sqrt((Xi - Xjk)^2 (Yi - Yjk)^2)

For all Djk <= radius

Zi = average(Djk

Else not in bounding area

If next node is not false

Plot(next node, Xi, Yi, radius

Main

BuildTree(tree, depth)

For all points x,y in input file

Insert(tree, x, y, depth)

For all Xi in Xj,k

For all Yi in Yj,k

Plot(tree, gridXstart + (Xi * resolution), gridYstart + (Yi * resolution), radius)

3rd try (Database method)

Attempts to unload query times to a mysql database. Faster than 1st try but slower than second. Also fails
on large datasets with out of memory errors.

For all points in input file

Insert points into data base

For all Xi in Xj,k

For all Yi in Yj,k

Djk = sqrt((Xi - Xjk)^2 (Yi - Yjk)^2)

For all points in database where Djk <= radius

Zi = average(Djk)

Notes on Lidar interpolation 12

Sample SQL Commmand

SELECT * FROM (SELECT SQRT(((6197211.71 - point.x) * (6197211.71 - point.x)) +

((1964738.78 - point.y)* (1964738.78 - point.y)))

as d,z FROM point)AS dis WHERE d < 100.0 ORDER BY z

SQL statement code in java:

xval = xmin + (x * res);

yval = ymin + (y * res);

xmin is the starting x coordinate for the region

ymin is the starting y coordinate for the region

res is the resolution of the grid

x and y are the corresponding current positions in the grid

SQL query statement java passes to the database

query2 = "SELECT * FROM (SELECT SQRT((("+xval+" - point.x) * ("+xval+" - point.x)) +"+

"(("+yval+" - point.y)* ("+yval+" - point.y)))as d,z "+

"FROM point)AS dis "+

"WHERE d < "+radius+" "+

"ORDER BY z ";

query_results = new ArrayList();

query_results = db.DBQueryRelation(query2, "z", connection);

Database has a single table called "point" with 3 columns x, y and z

