A Geoinformatics Approach to LiDAR / ALSM Data Distribution, Interpolation, and Analysis

Christopher J. Crosby¹, Jeffrey Conner², Efren Frank³, J Ramón Arowosimi⁴, Ahmed Memedi⁵, Visswamath Nandigama⁶, Gilead Wurman⁷ and Chaitan Barsu⁸
¹Department of Geological Sciences, Arizona State University, Tempe, AZ 85287
²San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92038
chris.crosby@asu.edu

III. OVERVIEW
• Using GEON cyberinfrastructure we have developed an internet-based LiDAR processing workflow that utilizes spatial database, GIS and web service technology to dist x, input, interpolation, and analyze visual LiDAR data.
• Features:
 - Spatial and attribute based queries on raw LiDAR point cloud data.
 - Spline and IDW interpolation to Digital Elevation Model (DEM).
 - User control over interpolation parameters.
 - Slope, aspect, and profile curvature (peaks) derived products.
 - Download of products in TIF (with world file), ASCII and ESRI Arc ASCII (Arc Grid) formats.
 - Visualization of data products via web browser window or in 3D via Folding Maps' viewer/Viewer and our own OpenL, L-based tools.

GRASS GIS WEB SERVICE / SERVLET:
• Using Java Servlet architecture we have built a LiDAR processing workflow that utilizes GRASS GIS services across the internet. Servlet components are shown in green at right.
• Based on parameters selected / input by the user at the web front end a parameter file is passed off to a PERL script that executes calls to GRASS. These core components of the tool are shown in purple at right.
• The products produced by the green part back to the Java Servlet where a download page is built and an email is sent to the user to inform them that their products are ready for download.
• In order to foster GEON-based LiDAR processing tool into the comprehensive GEON LiDAR workflow discussed above, we have also created a servlet-to-servlet connection (servlet) that accepts requests via XML.

PERFORMANCE:
[Graphs and data showing performance metrics for various LiDAR processing tasks are included.]

REFERENCES: